• 0 Posts
  • 16 Comments
Joined 1 year ago
cake
Cake day: June 17th, 2023

help-circle



  • And here’s a concern about the decentralized-but-still-centralized nature of attesters:

    From my understanding, attesting is conceptually similar to how the SSL/TLS infrastructure currently works:

    • Each ultimately-trusted attester has their own key pair (e.g. root certificate) for signing.

    • Some non-profit group or corporation collects all the public keys of these attesters and bundles them together.

    • The requesting party (web browser for TLS, web server for WEI) checks the signature sent by the other party against public keys in the requesting party’s bundle. If it matches one of them, the other party is trusted. If it doesn’t, they are not not trusted.

    This works for TLS because we have a ton of root certificates, intermediate certificates, and signing authorities. If CA Foo is prejudice against you or your domain name, you can always go to another of the hundreds of CAs.

    For WEI, there isn’t such an infrastructure in place. It’s likely that we’ll have these attesters to start with:

    • Microsoft
    • Apple
    • Google

    But hey, maybe we’ll have some intermediate attesters as well:

    • Canonical
    • RedHat
    • Mozilla
    • Brave

    Even with that list, though, it doesn’t bode well for FOSS software. Who’s going to attest to various browser forks, or for browsers running on different operating systems that aren’t backed by corporations?

    Furthermore, if this is meant to verify the integrity of browser environments, what is that going to mean for devices that don’t support Secure Boot? Will they be considered unverified because the OS can’t ensure it wasn’t tampered with by the bootloader?


  • Adding another issue to the pile:

    Even if it isn’t the intent of the spec, it’s dangerous to allow for websites to differentiate between unverified browsers, browsers attested to by party A, and browser attested to by party B. Providing a mechanism for cryptographic verification opens the door for specific browsers to be enforced for websites.

    For a corporate example:

    Suppose we have ExampleTechFirm, a huge investor in a private AI company, ShutAI. ExampleTechFirm happens to also make a web browser, Sledge. ExampleTechFirm could exert influence on ShutAI so that ShutAI adds rate limiting to all browsers that aren’t verified with ShutAI as the attester. Now, anyone who isn’t using Sledge is being given a degraded experience. Because attesting uses cryptographic signatures, you can’t bypass this user-hostile quality of service mechanism; you have to install Sledge.

    For a political example:

    Consider that I’m General Aladeen, the leader of the country Wadiya. I want to spy on my citizens and know what all of them are doing on their computers. I don’t want to start a revolt by making it illegal to own a computer without my spyware EyeOfAladeen, nor do I have the resources to do that.

    Instead, I enact a law that makes it illegal for companies to operate in Wadiya unless their web services refuse access to Wadiyan citizens that aren’t using a browser attested to by the “free, non-profit” Wadiyan Web Agency. Next, I have my scientists create and release a renamed versions of Chromium and Firefox with EyeOfAladeen bundled in them. Those are the only two browsers that are attested by the Wadiyan Web Agency.

    Now, all my citizens are being encouraged to unknowingly install spyware. Goal achieved!


  • Circular dependencies can be removed in almost every case by splitting out a large module into smaller ones and adding an interface or two.

    In your bot example, you have a circular dependency where (for example) the bot needs to read messages, then run a command from a module, which then needs to send messages back.

        v-----------\
      bot    command_foo
        \-----------^
    

    This can be solved by making a command conform to an interface, and shifting the responsibility of registering commands to the code that creates the bot instance.

        main <---
        ^        \
        |          \
        bot ---> command_foo
    

    The bot module would expose the Bot class and a Command instance. The command_foo module would import Bot and export a class implementing Command.

    The main function would import Bot and CommandFoo, and create an instance of the bot with CommandFoo registered:

    // bot module
    export interface Command {
        onRegister(bot: Bot, command: string);
        onCommand(user: User, message: string);
    }
    
    // command_foo module
    import {Bot, Command} from "bot";
    export class CommandFoo implements Command {
        private bot: Bot;
    
        onRegister(bot: Bot, command: string) {
            this.bot = bot;
        }
    
        onCommand(user: User, message: string) {
            this.bot.replyTo(user, "Bar.");
        }
    }
    
    // main
    import {Bot} from "bot";
    import {CommandFoo} from "command_foo";
    
    let bot = new Bot();
    bot.registerCommand("/foo", new CommandFoo());
    bot.start();
    

    It’s a few more lines of code, but it has no circular dependencies, reduced coupling, and more flexibility. It’s easier to write unit tests for, and users are free to extend it with whatever commands they want, without needing to modify the bot module to add them.


  • eth0p@iusearchlinux.fyitoAsklemmy@lemmy.ml*Permanently Deleted*
    link
    fedilink
    English
    arrow-up
    7
    ·
    edit-2
    1 year ago

    A couple years back, I had some fun proof-of-concepting the terrible UX of preventing password managers or pasting passwords.

    It can get so much worse than just an alert() when right-clicking.

    The codepen.

    A small note: It doesn’t work with mobile virtual keyboards, since they don’t send keystrokes. Maybe that’s a bug, or maybe it’s a security feature ;)

    But yeah, best tried with a laptop or desktop computer.

    How it detects password managers:

    • Unexpected CSS or DOM changes to the input element, such as an icon overlay for LastPass.

    • Paste event listening.

    • Right clicking.

    • Detecting if more than one character is inserted or deleted at a time.

    In hindsight, it could be even worse by using Object.defineProperty to check if the value property is manipulated or if setAttribute is called with the value attribute.


  • This may be an unpopular opinion, but I like some of the ideas behind functional programming.

    An excellent example would be where you have a stream of data that you need to process. With streams, filters, maps, and (to a lesser extent) reduction functions, you’re encouraged to write maintainable code. As long as everything isn’t horribly coupled and lambdas are replaced with named functions, you end up with a nicely readable pipeline that describes what happens at each stage. Having a bunch of smaller functions is great for unit testing, too!

    But in Java… yeah, no. Java, the JVM and Java bytecode is not optimized for that style of programming.

    As far as the language itself goes, the lack of suffix functions hurts readability. If we have code to do some specific, common operation over streams, we’re stuck with nesting. For instance,

    var result = sortAndSumEveryNthValue(2, 
                     data.stream()
                         .map(parseData)
                         .filter(ParsedData::isValid)
                         .map(ParsedData::getValue)
                    )
                    .map(value -> value / 2)
                    ...
    

    That would be much easier to read at a glance if we had a pipeline operator or something like Kotlin extension functions.

    var result = data.stream()
                    .map(parseData)
                    .filter(ParsedData::isValid)
                    .map(ParsedData::getValue)
                    .sortAndSumEveryNthValue(2) // suffix form
                    .map(value -> value / 2)
                    ...
    

    Even JavaScript added a pipeline operator to solve this kind of nesting problem.

    And then we have the issues caused by the implementation of the language. Everything except primitives are an object, and only objects can be passed into generic functions.

    Lambda functions? Short-lived instances of anonymous classes that implement some interface.

    Generics over a primitive type (e.g. HashMap<Integer, String>)? Short-lived boxed primitives that automatically desugar to the primitive type.

    If I wanted my functional code to be as fast as writing everything in an imperative style, I would have to trust that the JIT performs appropriate optimizations. Unfortunately, I don’t. There’s a lot that needs to be optimized:

    • Inlining lambdas and small functions.
    • Recognizing boxed primitives and replacing them with raw primitives.
    • Escape analysis and avoiding heap memory allocations for temporary objects.
    • Avoiding unnecessary copying by constructing object fields in-place.
    • Converting the stream to a loop.

    I’m sure some of those are implemented, but as far as benchmarks have shown, Streams are still slower in Java 17. That’s not to say that Java’s functional programming APIs should be avoided at all costs—that’s premature optimization. But in hot loops or places where performance is critical, they are not the optimal choice.

    Outside of Java but still within the JVM ecosystem, Kotlin actually has the capability to inline functions passed to higher-order functions at compile time.

    /rant


  • Yep! I ended up doing my entire co-op with them, and it meshed really well with my interest in creating developer-focused tooling and automation.

    Unfortunately I didn’t have the time to make the necessary changes and get approval from legal to open-source it, but I spent a good few months creating a tool for validating constraints for deployments on a Kubernetes cluster. It basically lets the operations team specify rules to check deployments for footguns that affect the cluster health, and then can be run by the dev-ops teams locally or as a Kubernetes operator (a daemon service running on the cluster) that will spam a Slack channel if a team deploys something super dangerous.

    The neat part was that the constraint checking logic was extremely powerful, completely customizable, versioned, and used a declarative policy language instead of a scripting language. None of the rules were hard-coded into the binary, and teams could even write their own rules to help them avoid past deployment issues. It handled iterating over arbitrary-sized lists, and even could access values across different files in the deployment to check complex constraints like some value in one manifest didn’t exceed a value declared in some other manifest.

    I’m not sure if a new tool has come along to fill the niche that mine did, but at the time, the others all had their own issues that failed to meet the needs I was trying to satisfy (e.g. hard-coded, used JavaScript, couldn’t handle loops, couldn’t check across file boundaries, etc.).

    It’s probably one of the tools I’m most proud of, honestly. I just wish I wrote the code better. Did not have much experience with Go at the time, and I really could have done a better job structuring the packages to have fewer layers of nested dependencies.






  • Oh cool, there’s a 200mp camera. Something that only pro photographers care about lol.

    Oh this is a fun one! Trained, professional photographers generally don’t care either, since more megapixels aren’t guaranteed to make better photos.

    Consider two sensors that take up the same physical space and capture light with the same efficiency/ability, but are 10 vs 40 megapixels. (Note: Realistically, a higher density would mean design trade-offs and more generous manufacturing tolerances.)

    From a physics perspective, the higher megapixel sensor will collect the same amount of light spread over a more dense area. This means that the resolution of the captured light will be higher, but each single pixel will get less overall light.

    So imagine we have 40 photons of light:

    More Pixels    Less Pixels
    -----------    -----------
    1 2 1 5         
    2 6 2 3         11  11
    1 9 0 1         15  3
    4 1 1 1         
    

    When you zoom in to the individual pixels, the higher-resolution sensor will appear more noisy. This can be mitigated by pixel binning, which groups (or “bins”) those physical pixels into larger, virtual ones—essentially mimicking the lower-resolution sensor. Software can get crafty and try to use some more tricks to de-noise it without ruining the sharpness, though. Or if you could sit completely still for a few seconds, you could significantly lower the ISO and get a better average for each pixel.

    Strictly from a physics perspective (and assuming the sensors are the same overall quality), higher megapixel sensors are better simply because you can capture more detail and end up with similar quality when you scale the picture down to whatever you’re comparing it against. More detail never hurts.

    … Except when it does. Unless you save your photos as RAW (which take a massice amount of space), they’re going to be compressed into a lossy image format like JPEG. And the lovely thing about JPEG, is that it takes advantage of human vision to strip away visual information that we generally wouldn’t perceive, like slight color changes and high frequency details (like noise!)

    And you can probably see where this is going: the way that the photo is encoded and stored destroys data that would have otherwise ensured you could eventually create a comparable (or better) photo. Luckily, though, the image is pre-processed by the camera software before encoding it as a JPEG, applying some of those quality-improving tricks before the data is lost. That leaves you at the mercy of the manufacturer’s software, however.

    In summary: more megapixels is better in theory. In practice, bad software and image compression negate the advantages that a higher resolution provides, and higher-density sensors likely mean lower-quality data. Also, don’t expect more megapixels to mean better zoom. You would need an actual lense for that.


  • It’s a “feature,” in fact…

    Under What to expect on this support page, it says:

    • The phone branding, network configuration, carrier features, and system apps will be different based on the SIM card you insert or the carrier linked to the eSIM.

    • The new carrier’s settings menus will be applied.

    • The previous carrier’s apps will be disabled.

    The correct approach from a UX perspective would have been to display an out-of-box experience wizard that gives the user an option to either use the recommended defaults, or customize what gets installed.

    Unfortunately, many manufacturers don’t do that, and just install the apps unconditionally and with system-level permissions. And even if they did, it’s likely that many of the carrier apps will either have a manifest value that requires them to be installed, be unlabeled (e.g. com.example.carrier.msm.mdm.MDM), or misleadingly named to appear essential (e.g. “Mobile Services Manager”).


  • I bought an unlocked phone directly from the manufacturer and still didn’t get the choice.

    Inserting a SIM card wiped the phone and provisioned it, installing all sorts of carrier-provided apps with system-level permissions.

    As far as I’ve found, there’s a few possible solutions:

    • Unlock the bootloader and install a custom ROM that doesn’t automatically install carrier-provided apps. (Warning: This will blow the E-fuse on Samsung devices, disabling biometrics and other features provided by their proprietary HSM).

    • Manually disable the apps after they’re forcibly installed for you. Install adb on a computer and use pm disable-user --user 0 the.app.package on every app you don’t want. If your OEM ROM is particularly scummy, it might go out of its way to periodically re-enable some of them, though.

    • Find a SIM card for a carrier that doesn’t install any apps, then insert that into a fresh phone and hope that the phone doesn’t adopt the new carrier’s apps (or wipe the phone) when you insert your actual SIM.