Go has a heavy focus on simplicity and ease-of-use by hiding away complexity through abstractions, something that makes it an excellent language for getting to the minimum-viable-product point. Which I definitely applaud it for, it can be a true joy to code an initial implementation in it.
The issue with hiding complexity like such is when you reach the limit of the provided abstractions, something that will inevitably happen when your project reaches a certain size. For many languages (like C/C++, Ruby, Python, etc) there’s an option to - at that point - skip the abstractions and instead code directly against the underlying layers, but Go doesn’t actually have that option.
One result of this is that many enterprise-sized Go projects have had to - in pure desperation - hire the people who designed Go in the first place, just to get the necessary expertice to be able to continue development.
Go has a heavy focus on simplicity and ease-of-use by hiding away complexity through abstractions, something that makes it an excellent language for getting to the minimum-viable-product point. Which I definitely applaud it for, it can be a true joy to code an initial implementation in it.
The issue with hiding complexity like such is when you reach the limit of the provided abstractions, something that will inevitably happen when your project reaches a certain size. For many languages (like C/C++, Ruby, Python, etc) there’s an option to - at that point - skip the abstractions and instead code directly against the underlying layers, but Go doesn’t actually have that option.
One result of this is that many enterprise-sized Go projects have had to - in pure desperation - hire the people who designed Go in the first place, just to get the necessary expertice to be able to continue development.
Here’s one example in the form of a blog - with some examples of where hidden complexity can cause issues in the longer term; https://fasterthanli.me/articles/i-want-off-mr-golangs-wild-ride